569 research outputs found

    Toward Two-Photon Absorbing Dyes with Unusually Potentiated Nonlinear Fluorescence Response

    Get PDF
    The combination of two two-photon-induced processes in a F\uf6rster resonance energy transfer (FRET)-operated photochromic fluorene-dithienylethene dyad lays the foundation for the observation of a quartic dependence of the fluorescence signal on the excitation light intensity. While this photophysical behavior is predicted for a four-photon absorbing dye, the herein proposed approach opens the way to use two-photon absorbing dyes, reaching the same performance. Hence, the spatial resolution limit, being a critical parameter for applications in fluorescence imaging or data storage with common two-photon absorbing dyes, is dramatically improved

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer

    No full text
    Carbon nanomaterials (CNMs) and conjugated polymers (CPs) are actively investigated in applications such as optics, catalysis, solar cells, and tissue engineering. Generally, CNMs are implemented in devices where the relationship between the active elements and the micro and nanostructure has a crucial role. However, they present some limitations related to solubility, processibility and release or degradability that affect their manufacturing. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT) or derivatives can hide this limitation by electrodeposition onto an electrode. In this work we have explored two different CNMs immobilization methods in 2D and 3D structures. First, CNM/CP hybrid 2D films with enhanced electrochemical properties have been developed using bis-malonyl PEDOT and fullerene C60. The resulting 2D films nanoparticulate present novel electrochromic properties. Secondly, 3D porous self-standing scaffolds were prepared, containing carbon nanotubes and PEDOT by using the same bis-EDOT co-monomer, which show porosity and topography dependence on the composition. This article shows the validity of electropolymerization to obtain 2D and 3D materials including different carbon nanomaterials and conductive polymers

    3D Scaffolds Based on Conductive Polymers for Biomedical Applications

    Get PDF
    Unformatted postprint.3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell− matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 753293, acronym NanoBEAT, and European Research Council by Starting Grant Innovative Polymers for Energy Storage (iPes) 306250

    Effect of the fullerene in the properties of thin PEDOT/C60films obtained by co-electrodeposition

    No full text
    Organic electronics requires the development of reproducible and highly conductive thin films. The arrangement of poly(3,4-ethylenedioxythiophene) (PEDOT) with fullerene C60 leads to products with the combined properties of both species that are excellent candidates for these applications. However, very little has been studied about the effect of doping PEDOT with C60, and thus there is a lack of information regarding the morphology, electrochemical and electrochromic properties of the resulting films. Herein, simultaneous electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with fullerene C60 was carried out via cyclic voltammetry in the range from 0.0 V to +1.5 V (vs Ag/AgCl) in a three-compartment cell. ITO coated on PET was used as both working and counter electrodes. The fullerene presence within the films was confirmed with MALDI and TGA (27.5% of fullerene content). The cyclic voltamograms showed that the C60-doped film has a higher oxidation potential, what was attributed to the electron affinity of the fullerene cage. Furthermore, the spectroelectrochemical and electrochromic analyses showed that the PEDOT/C60 films present a dark violet coloration in the reduced state, which differs from the usual dark blue of the PEDOT polymer. Finally, the morphology was analyzed using AFM and SEM, and pillar structure of broccoli-like particles was observed for both films. However, the fullerene doping generated smaller polymer-based particles, thus forming a denser structure with higher surface area, suggesting the use of the cages as nucleation points for the polymerization

    Toward Two-Photon Absorbing Dyes with Unusually Potentiated Nonlinear Fluorescence Response

    No full text
    The combination of two two-photon-induced processes in a F\uf6rster resonance energy transfer (FRET)-operated photochromic fluorene-dithienylethene dyad lays the foundation for the observation of a quartic dependence of the fluorescence signal on the excitation light intensity. While this photophysical behavior is predicted for a four-photon absorbing dye, the herein proposed approach opens the way to use two-photon absorbing dyes, reaching the same performance. Hence, the spatial resolution limit, being a critical parameter for applications in fluorescence imaging or data storage with common two-photon absorbing dyes, is dramatically improved

    Water Soluble Cationic Poly(3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics

    No full text
    Poly(3,4-ethylenedioxythiophene) (PEDOT) is the most popular conducting polymer in the emerging field of bioelectronics. Besides its excellent properties and commercial availability, its success is due to the aqueous processability of its anionically stabilized solutions or dispersions. In this work, a water soluble version of PEDOT is shown, which is cationically stabilized. This work reports the chemical oxidative (co)polymerization of EDOT-ammonium derivative leading to PEDOT-N (co)polymers. PEDOT-N shows the typical features of PEDOT such as UV absorbance, bipolaron band, electrical conductivity, electrochemical behavior, and film formation ability. Furthermore, the PEDOT-N films show good biocompatibility in the presence of the human embryonic kidney-293 cell line. The water solubility of PEDOT-N and its cationic nature allows its processability in the form of thin films obtained by the layer-by-layer technique or as conducting hydrogels.Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Mantione, Daniele. Université de Bordeaux; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dominguez Alfaro, Antonio. Centro de Investigacion Cooperativa En Biomateriales.; EspañaFil: Moya, Sergio. Centro de Investigacion Cooperativa En Biomateriales.; EspañaFil: Maza, Eliana. Centro de Investigacion Cooperativa En Biomateriales.; EspañaFil: Bellacanzone, Christian. Istituto Italiano di Tecnologia; ItaliaFil: Antognazza, Maria Rosa. Istituto Italiano di Tecnologia; ItaliaFil: Mecerreyes, David. Universidad del Pais Vasco. Polymat.; Españ
    corecore